

5th World Congress of the International Microsimulation Association (IMA)

Luxembourg, 2-4 September 2015

The Event Pump: An Agent Based approach to

Microsimulation

Peter Stephensen

DREAM

Abstract

Events are a basic element in most dynamic microsimulation models. Events are what

people do: birth, death, moving etc. According to the Event-Pump Architecture, the core

driver of the model is a loop called the event pump. This loop controls when and where

things happen in the model. The feature is inspired by the message pump, which is a

central element in how Windows is programmed (Petzold, 1998). The method is used in

the microsimulation model SMILE-DK (Stephensen, 2013) , in the official Danish

population forecast (Hansen & Stephensen, 2014) and in a forthcoming agent-based

analysis of the Danish housing marked.

Keywords: population projections, education, household projections, housing demand,

microsimulation

 Page 2 of 8

The Event Pump: An Agent Based approach to

Microsimulation

1. Introduction

In the Danish microsimulation model SMILE a novel approach is used, called the Event-

Pump Architecture. As in most other dynamic microsimulation models a basic element of

the model is events. Events are what people do: birth, death, moving etc. The core driver

of the model is a loop called the event pump. This loop controls when and where things

happen in the model. The feature is inspired by the message pump, which is a central

element in how Windows is programmed (Petzold, 1998).

2. The SMILE model

The SMILE1 model is a Danish, dynamic, data-driven microsimulation model. The current

version 3 forecasts demography, education level, socioeconomic characteristics,

housing demand, income, taxation, public benefits and labor market pensions for the

period 2014-2050.

The SMILE model is dynamic in the sense that an initial population (the entire Danish

population of approximately 5.5 million persons) is forecasted into the future.

Demographic events such as death, birth, immigration, emigration etc. are modelled.

Projections of death probabilities are based on the Lee-Carter econometric method (Lee

& Carter, 1992). The model is subdivided in 98 regions and a matching algorithm called

SBAM (Stephensen & Markeprand, 2013) is used.

The modelling of education decisions is based on a regionally subdivided transition

probabilities calculated from Danish register data and it thus forecasts education levels

by employing historical educational behavior. The modelling of income and labor market

dynamics is based on (Bækgaard, 2013).

The moving probability is divided by background characteristics of the household and by

characteristics of the household's current dwelling. Together this results in a lot of

explaining variables why the moving probability is calculated as a CTREE (Rasmussen,

2013).

The SMILE model is a data-driven model, based on rich Danish register data. The data

cover the entire Danish population on annual basis in the period between 1986 and

2013. On each individual our dataset contains information about the person himself

(gender, age, educational background, labor market participation, income etc.), the

person’s family situation (single/couple, number of children living at home etc.) and

information about the dwelling that the person’s household lives in (location,

owner/rental status, dwelling type and size etc.). We derive data from seven different

1 Simulation Model for Individual Lifecycle Evaluation.

 Page 3 of 8

sources made available through Statistics Denmark. The main data sources are the

Danish Civil Registration System (CPR-registret), the Housing Register (Bygnings- og

Boligregistret, BBR), the education register (Uddannelsesregistret) and the labor force

statistics (Registerbaseret Arbejdsstyrkestatistik, RAS).

3. Basic concepts

The basic concepts in the development strategy have been object orientation and agent

based modelling. The model is programmed in an object orientated programming

language (C#). The advantages of object orientation are often described by the words

encapsulation and separation. By encapsulation you mean that a lot of functionality can

be hidden inside an object. That makes it easier for others to use it. This is best

demonstrated by an example. Figure 1 shows the Agent Tree. This is basically the

model. The Simulation object at the top level controls the simulation. The left branch

contains the actual agents of the system: the households and the persons. The right

branch contains different kinds of functionality. The Demographics object contains

information on the behavior of the households and persons, and the Statistics object

gathers information (output data). The Demographics object contains all the transition

probabilities and (importantly) how to use them. All this functionality is encapsulated in

the object. When programming the left branch you can use the Demographics object

without actually knowing/understanding what’s inside it. You could now replace the

Demographics object with a Swedish version (ie. with Swedish transition probabilities)

and you would have a Swedish instead of a Danish model. This example also

demonstrates the related concept separation. It is considered as good programming

practice to separate various tasks. This makes it easier to maintain code and to find

errors. The structure of the model naturally separates these tasks.

In the last 10 to 15 years Agent Based Modelling has been more and more common.

The basic idea is that modelling should be done at the individual level, and that

interaction is important. Microsimulation and agent based modelling is related traditions

but never the less different. Both traditions work at the individual level. But when it

comes to interaction among the agents there are differences. The most important

example of interaction in microsimulation models is the formation of couples. In many

microsimulation models (also in SMILE) this problem is solved with a top-down

approach. In an agent based model the approach should always be bottom-up. Agent

based models are more principled, use more theory and less data. Microsimulation

models are data-driven and more pragmatic.

Despite these differences SMILE is basically build as an agent based model. It is

probably fair to say that microsimulation models is a pragmatic subset of agent based

models. The basic argument for using an agent based modelling strategy is therefore

generality. Using this approach opens up for a lot of future possibilities of interaction

between the agents.

The decision to follow an agent based path let to the idea of a basic Agent object. This

object is the Lego block from which the model is build. An Agent is a thing that 1)

Potentially has children 2) Potentially do stuff. By ‘having children’ we mean pointing to

other Agents. It is this property that makes it possible to build an Agent Tree like the one

 Page 4 of 8

shown in Figure 1. By ‘do stuff’ we mean having a generic method/function that defines

what to do under different circumstances. This method (a ‘function’ is called a ‘method’

in C#) is called EventProc(idEvent). The input idEvent is an event ID that defines the

current event. The generic behavior (the so called base implementation) of EventProc is

to do nothing and just send idEvent to all its children Agents (if any). If you therefore

sends an idEvent to the EventProc of the top Simulation object in Figure 1, the event

will automatically be send down the tree an eventually reach all Agents. If you want your

EventProc to do something (a Person to die or a Household to move), you just program

this behavior before you send the event to the children Agents. Or if you know the event

is of no interest for the Agents further down the tree, you can chose to stop the event.

This can be a source of speed gains.

Figure 1 The Agent Tree

Having constructed the Agent tree from our Agent Lego blocks, we just need to send

sequences of events down the tree to make the model run. This is done by the Event

Pump. The Event Pump is a loop located in the top Simulation objects EventProc. It

sends events down the tree in the correct order. Typically it repeats the same sequence

of events every period.

 Page 5 of 8

The Event Pump got its name from the so called Windows Message Pump that is a

fundamental concept in the original programming of Windows (the Win32 API, see

Petzold 1998). In Windows every window is controlled by a callback function called

WinProc. The input to this function is (among other) a parameter iMsg. This is a

message ID that defines which message the window receives (pressing a button,

moving the mouse over the window etc.). The Message Pump controls the order of

these iMsg’s. The parallel to our approach is obvious.

The Event Pump Architecture has proven itself very useful and flexible. It is easy to

make changes to the model and we have yet to face microsimulation/Agent-based

issues that do not have an Event Pump implementation.

4. Events

The ‘Event Pump’ pumps events into the Agent tree. In the simplest version of the

SMILE model, five events are defined:

 Event.System.Start

 Event.System.End

 Event.System.YearStart

 Event.System.YearEnd

 Event.Behavior.Update

The four system events are used to control the flow of the model. The last update-event

is used to trigger the actual behavior of the agents. In more elaborated versions, the

update-event will typically be split up in more events (death, birth, move etc.).

In code example 1 a simplified version of the C# implementation of the EventProc in the

top Simulation object is given. The basic structure of the EventProc-method is a so

called switch that provides a differentiated response on the various events. The model

starts by sending an Event.System.Start event to the Simulation objects EventProc.

This initiates the Event-Pump. A time object _time controls the length of the simulation.

The method _time.NextYear() returns True every year until the end of the simulation.

Hereafter it returns False, such that the Event Pump ends.

In a given year, the Event Pump sends the 3 events Event.System.YearStart,

Event.Behavior.Update and Event.System.YearEnd to the Simulation objects

EventProc (recursive calls as the Event Pump is itself part of this method; This explains

the ‘this’).

In code example 1 the implementation of Event.System.YearStart and

Event.System.End is showed. The YearStart-event writes the current year to the

console, and sends the event down the Agent tree to its children with the method

base.EventProc(idEvent). This is the so called base implementation of the EventProc in

 Page 6 of 8

all Agent objects. All it does is sending the event to its children (if any). The

System.Stop event just sends the event down to its children.

Code example 1 The EventProc in the Simulation object

Every year all agents in figure 1 receive the events Event.System.YearStart,

Event.Behavior.Update and Event.System.YearEnd. The role of the Statistics object

is to collect output data from the simulation. This object will use

Event.System.YearStart to reset all its counters to zero and it can use

Event.System.YearEnd to write output data to file. It uses Event.System.Stop to

close the output files. The agents that react on Event.Behavior.Update will typically

only be the agents in the left household branch in figure 1. When a Person object

receives the update-event, it will serially make all its decisions (death, birth, education,

move etc.). The decisions are made by asking the Demography object. The

 Page 7 of 8

Demography object looks at the asking agent, and gives an answer given its data

(transitions probabilities, estimated models etc.) and one or more draws from the

random generator. When there is only one update event we call it a Serial approach, as

opposed to the Parallel approach when we have multiple update events.

5. Alignment by slicing

Alignment plays an important role in microsimulation. Alignment basically works by

manipulating the probabilities of the model, aiming to do model calibration, comparative

analysis (static or dynamic) and/or to eliminate Monte-Carlo noise. In SMILE we use the

alignment method described in (Stephensen, 2014).

If the model is build, following the serial approach (only one update event) it is hard to do

alignment. Under this approach, all calculations in a given year are done first for agent 1,

then for agent 2 etc. Alignment is typically done by gathering all individual transition

probabilities and then manipulate these such that a given aggregated target is reached.

This is done much easier under the parallel approach: by slicing the update event.

For the sake of argument, assume we model death, birth, education, income and tax,

and that we only want to align education to given national levels. Under the serial

approach we would have only one update event, in which death, birth, education,

income and tax would be calculated one agent a time. To do alignment we would slice

the update event in four:

 Event.Behavior.Update1 Death, birth

 Event.Behavior.EducationeAlignInit Probability gathering

 Event.Behavior.Education Education

 Event.Behavior.Update2 Income, tax

Under Event.Behavior.Update1 and Event.Behavior.Update2 death, birth, income and

tax is modelled without alignment. Under the event

Event.Behavior.EducationeAlignInit all education probabilities are gathered and

handed to an Aligment object together with the aggregated targets. This object do the

actual alignment calculations. Under the event Event.Behavior.Education education

behavior is modelled with the manipulated probabilities.

 Page 8 of 8

6. References

Bækgaard, H. (2013): A Bayesian approach to labour market modeling in dynamic

microsimulation, DREAM Conference Paper, December 2013. The paper can be

downloaded from www.dreammodel.dk/SMILE

Hansen, J. Z., Stephensen, P. & Kristensen, J. B. (2013): Household Formation and

Housing Demand Forecasts, DREAM Report, December 2013. The report can be

downloaded from www.dreammodel.dk/SMILE

Hansen, J. Z. (2013): Modeling Household Formation and Housing Demand in Denmark

using the Dynamic Microsimulation Model SMILE, DREAM Conference Paper,

December 2013. The paper can be downloaded from www.dreammodel.dk/SMILE

Lee, Ronald D. & Carter, Lawrence R. (1992): Modeling and Forecasting U.S. Mortality,

Journal of the American Statistical Association, Vol. 87, No. 419, 659-671.

Rasmussen, N. E. (2013): Conditional inference trees in dynamic microsimulation -

modelling transition probabilities in the SMILE model, DREAM Conference Paper,

December 2013. The paper can be downloaded from www.dreammodel.dk/SMILE

Petzold, Charles (1998): Programming Windows. 5th edition. Microsoft Press. 1479

pages.

http://www.dreammodel.dk/SMILE

